Regulation of the thyroid NADPH-dependent H2O2 generator by Ca2+: studies with phenylarsine oxide in thyroid plasma membrane.

نویسندگان

  • Y Gorin
  • A M Leseney
  • R Ohayon
  • C Dupuy
  • J Pommier
  • A Virion
  • D Dème
چکیده

Pig thyroid plasma membranes contain a Ca(2+)-dependent NADPH:O2 oxidoreductase, the thyroid NADPH-dependent H2O2 generator. This provided the H2O2 for the peroxidase-catalysed synthesis of thyroid hormones. The effect of the tervalent arsenical, phenylarsine oxide (PAO), on the NADPH oxidase was studied. PAO caused two directly related dose-dependent effects with similar half-effect concentrations of PAO (3 nmol of PAO/mg of protein): (i) partial inactivation of H2O2 formation by the Ca(2+)-stimulated enzyme, and (ii) desensitization of the enzyme activity to Ca2+. PAO had no effect on membranes that had been Ca(2+)-desensitized by alpha-chymotrypsin treatment. The NADPH oxidase in membranes treated with excess PAO had the same Vmax with and without Ca2+. This value was half the Vmax of the native enzyme. However, the K(m) for NADPH determined with Ca2+ (18 microM, identical with that of the native enzyme) was approx, one-third of the K(m) measured without Ca2+, showing the direct action of Ca2+ on the PAO-enzyme complex. PAO had the same effects, partial inactivation and Ca2+ desensitization, on the NADPH: ferricyanide oxidoreductase activity of the NADPH oxidase, suggesting that PAO acts on the flavodehydrogenase entity of the enzyme. Both partial inactivation and Ca2+ desensitization were completely and specifically reversed by 2.3-dimercaptopropanol, partly reversed by dithiothreitol and not reversed by 2-mercaptoethanol, indicating that PAO binds to vicinal thiol groups. These results suggest that thiol groups are involved in the control of thyroid NADPH oxidase by Ca2+; PAO bound to vicinal thiols might alter the structure of the enzyme so that electron transfer occurs without Ca2+ but more slowly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of hydrogen peroxide formation catalyzed by NADPH oxidase in thyroid plasma membrane.

The thyroid plasma membrane contains a Ca2(+)-regulated NADPH-dependent H2O2 generating system which provides H2O2 for the thyroid peroxidase-catalyzed biosynthesis of thyroid hormones. The plasma membrane fraction contains a Ca2(+)-independent cytochrome c reductase activity which is not inhibited by superoxide dismutase. But it is not known whether H2O2 is produced directly from molecular oxy...

متن کامل

Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity.

Duox2 (and probably Duox1) is a glycoflavoprotein involved in thyroid hormone biosynthesis, as the thyroid H2O2 generator functionally associated with Tpo (thyroperoxidase). So far, because of the impairment of maturation and of the targeting process, transfecting DUOX into nonthyroid cell lines has not led to the expression of a functional H2O2-generating system at the plasma membrane. For the...

متن کامل

Dual oxidase2 is expressed all along the digestive tract.

The dual oxidase (Duox)2 flavoprotein is strongly expressed in the thyroid gland, where it plays a critical role in the synthesis of thyroid hormones by providing thyroperoxidase with H2O2. DUOX2 mRNA was recently detected by RT-PCR and in-situ hybridization experiments in other tissues, such as rat colon and rat and human epithelial cells from the salivary excretory ducts and rectal glands. We...

متن کامل

Chapter 2 Thyroid Hormone Synthesis and Secretion

The main function of the thyroid gland is to make hormones, T4 and T3, which are essential for the regulation of metabolic processes throughout the body. As at any factory, effective production depends on three key components adequate raw material, efficient machinery, and appropriate controls. Iodine is the critical raw material, because 65% of T4 weight is iodine. Ingested iodine is absorbed ...

متن کامل

Implications of the thyroid hormone on neuronal development with special emphasis on the calmodulin-kinase IV pathway.

Thyroid hormones influence brain development through regulation of gene expression. This is especially true for Ca2+-dependent regulation since a major pathway is controlled by the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) which in turn is induced by the thyroid hormone T3. In addition, CaMKIV is involved in regulation of alternative splicing of a number of protein isoforms, among th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 321 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1997